

ISSUSE AND FEATURES TO CONSIDER WHEN
SELECTING A BLOCKCHAIN SYSTEM

Find us at www.chainfrog.com

http://www.chainfrog.com/

Licenses

● Most blockchains are open-source

(and you should not select a closed source one)

● If you are going to change a blockchain codebase the
license it carries is important

● Generally the license for a given project is selected from
one of three

● Check with your lawyer for details (we’re blockchain
experts, not legal experts)

1) MIT License

● Very permissive open software license:

● Do what you want with the code; ship only binaries,
rewrite part, rebrand, repackage, safely add your
own code

● Makes no reference to IP

● Limitations and obligations:

● Damage waiver (you can’t sue if their code causes
you a problem)

● Add a copy of the license
● Add the copyright notice

2) Apache 2.0 License

● Very permissive open software license:

● Do what you want with the code
● Release your modifications under a different license

if you like
● No obligation to release source
● Explicitly grants right to use patented software under

the license terms

● Limitations and obligations
● Damage waiver (you can’t sue if the code causes

you a problem)
● Add a copy of the license to the unmodified parts

3) GPL3 License

● “Free software” license:
● Do what you want with the code
● You can keep your work private and secret
● “Copyleft”

● Limitations and obligations
● Damage waiver (you can’t sue if the code causes

you a problem)
● You must give anyone who you distribute binaries to

a copy of the source code
● The source code must contains the GPL3 license
● So anything you add, merge, or improve becomes

covered by the GPL3 license
● You lose IP and control; it’s “out there” once released

Other Issues

● Cost (do you need to buy native tokens, pay a license
fee, buy dedicated hardware, cloud computing)

● Consensus protocol (can also be a cost)
● Transaction speed (how quickly can you push data

onto the system)
● Transaction size limitations
● Programming language used
● Focus and purpose of the blockchain
● Where are you going to run it? Cloud, private servers,

mix of both? Windows, Linux?

Bitcoin Fork
● Covered by MIT license

● Well established highly tested code base written mainly in C++

● 80 bytes/transaction

● 10 transactions/second

● Would require a lot of coding to transform into something more
useful (but see later systems)

Ethereum
● Different components have different licenses:

– Some GPL3, some MIT

● Different version coded in Go, C++, Java, Python, Ruby

● Development funded by crowdfunding in 2014

● Launched in 2015

● A public blockchain with an associated cryptocurrency called Ether
(ETH), and a more complicated (Turing complete) scripting language
called Solidity, which is like Javascript

● 100 tx/s

● Can deploy private “testnet” version, but privacy is not a core concern

● Expensive to push lots of data onto the public version

● Lot of infrastructure available (compilers, monitors, explorers)

● Focused on “smart contracts”

Eris
● A fork of Ethereum

● Removed Nakamoto consensus from Ethereum, and replaces it
with Tendermint, a Proof of Stake consensus system

● Adds better private and permissioned blockchain capabilities

● Eris “smart contracts” also should run on Ethereum

● Licensed under GPL3

● If it’s the same as Ethereum, transactions can be up to about
800kB

● Scalability is a bit complicated in Ethereum and Eris though, as
there’s the “gas limit” that restricts transaction size and
throughput.

MultiChain
● Currently only binaries available; CEO of company confirms

GPL3 and paid licenses will be available

● Forked from Bitcoin, but with a “round robin” signing consensus
protocol, meant for permissioned blockchains

● 8 Mb/transaction

● 100 transactions/second

● Supports “private data streams”; encrypted data stores only
readable by authorised parties. Data is in JSON format

● Supports multiple “native assets” - own cryptocurrencies.

bigchainDB
● Focused on scalability; built on rethinkDB noSQL database

● Claims to support “a million transactions per second” and large
data volumes

● License is either AGPL3 (a more copyleft version of GPL3) or you
can negotiate a commercial license for a fee

● However, the company that makes rethinkDB shut down in
October. Presumably bigchainDB is looking for a new supplier as
we speak.

● Consensus is through multisig signing of transactions. There are
no blocks…

● Has “big data” query capability

Corda
● Built from scratch by R3 consortium, funded mainly by banks

● Focuses on finance transactions, privacy, permissions, workflow

● A selection of consensus protocols available

● Recently open sourced with Apache 2.0 license

● Written in Kotlin (a new Java-like programming language)

● Supports “distributed apps”, which are basically “smart contracts”

Hyperledger
● This is the “blockchain” project that the big companies

are supporting.
– Coordinated by the Linux Foundation

– Three main projects are:
● Fabric (IBM blockchain for smart contracts)
● Sawtooth Lake (Intel blockchain using modular components)
● Iroha (Soramitsu blockchain focussing on moble apps, new)

● Yes, there are three different blockchain systems...

Fabric
● Tutorial on how to set up a development environment at

http://www.chainfrog.com/ibm-hyperledger-fabric/
● It uses:

– Docker, a software containerization platform, to ensure that if you
run Fabric on a native platform, all the required packages and
libraries are standardized. A Node.JS npm provides access to a
Fabric SDK.

– Or, a Virtual Machine running on VirtualBox, and Vagrant to ensure
the VM is Ubuntu configured to ensure a standard development
environment.

– Smart contract focussed, using Go language contracts

– Practical Byzantine Fault Tolerance, or Sieve, as a consensus
protocol.

– Designed as a permissioned blockchain

– Best deployed on IBM bluemix clound platform

http://www.chainfrog.com/ibm-hyperledger-fabric/

Sawtooth Lake
● Also uses a VM and Vagrant to provide a

standardized environment for execution and
development
– Core “sawtooth lake” code provides peers/validators

– “MarketPlace” JSON data structures and objects
provide the means to create and execute
transactions on the blockchain

– Uses a consensus protocol that really requires
trusted execution environment hardware and
software (i.e. Intel SGX)

● Tutorial available at
https://intelledger.github.io/tutorial.html

https://intelledger.github.io/tutorial.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

