

THE COMPUTER SCIENCE BIT

Find us at www.chainfrog.com

http://www.chainfrog.com/

Hash Functions

● A mathematical function is a mapping between a range
and a domain (strings connecting things in one box to
things in another box)

● A computer function is a self-contained procedure of
code that returns an output

● A hash function is a computer function that can be used
to map data of arbitrary size to data of fixed size. The
values returned by a hash function are called:

● hash values,
● hash codes,
● hash sums,
● or simply hashes

Hash Functions

● Some popular hash functions:

● RIPEMD-160 (160 bit hashes)
● SHA512 (512 bit hashes)
● BLAKE (256 bit hashes)

● For blockchains we want these functions to be:

● Deterministic (same output for same input, i.e. not
time dependent or featuring randomness)

● Collision proof (different data should give a different
hash output)

● Unpredictable/one way (we should not be able to
engineer a specific hash output)

Hash Functions

● http://www.xorbin.com/tools/sha256-hash-calculator

Input:
Hello, world!

Output:
315f5bdb76d078c43b8ac0064e4a0164612b1fce77c869345bfc94c75894edd3

Input:
hello, world!

Output:
68e656b251e67e8358bef8483ab0d51c6619f3e7a1a9f0e75838d41ff368f728

Input:
hello world

Output:
b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9

http://www.xorbin.com/tools/sha256-hash-calculator

Proof of Work

Based on Hashcash algorithm, invented by Adam Back
in 1997.

● Take your data and add a nonce: data + nonce

● Hash it twice: sha256(sha256(data + nonce)

● Check if your resulting hash output is smaller than a
given target (the difficulty)

● If not, try a new nonce, and repeat, again and again.
So it takes time...

Proof of Work

For example, find a nonce to add to “hello world” that gives a
sha256(sha256(input)) hash that starts with 0:

Input:
hello world19

Output:
0b6bac8ac40b7b0acc7a217f8321c62f9742dc7d87da467eb1c82bd2f651769c

●This took 19 attempts.
●Any particular attempt has a 1 in 16 chance of succeeding. p = 1/16
●Expected number of attempts to succeed:

E(X) = 1/p = 16.

●How about finding a hash(hash(input)) starting with 000?

Proof of Work

●How about find a double hash starting with 000?
●Answer: 1 in 4096 chance. (1 in 16*16*16)

Expected time to find: 4096 goes.
●Finding a hash(hash()) starting with k zeroes on
average takes 16^k goes

●But only 1 go to check a proposed block if
someone else finds and submits it.

●Summary: finding a block is hard, checking a
block is easy...

Dynamic Adjustment of Difficulty

●If more peers (“miners”, or “validators”)
join, a correct block is found more quickly.

●If some peers leave, a correct block is
found more slowly.

●To compensate the target (the difficulty) is
adjusted every N blocks to keep the
expected time to generate a block about
the same.

Dynamic Adjustment of Difficulty

●For Bitcoin N = 2016.
●Note: expected time is 10 minutes, but individual blocks
can be found within any time between 1s and a couple of
hours.

●Graph of geometric distribution for p=1/16:

Dynamic Adjustment of Difficulty

●Other view: cumulative probability of
finding a solution (this is for p=1/16):

But Why Do All This Work?

●Good question. Doing all these hashes to find blocks
is burning a lot of energy and heating up the planet!

●It’s a probabilistic solution to the Byzantine Generals
Problem: provided over half the computing power on
the blockchain network is “good”, the “evil” power
probably can’t subvert the system (for long).

●In other words, it’s a way (but not the only way) for a
distributed system to reach a consensus over time.

●Other, less power-intensive solutions are being
investigated (proof-of-stake, proof-of-elapsed-time,
practical Byzantine fault toleration).

Byzantine Generals Problem

Here’s Nakamoto’s recasting of the original BGP:
●A number of Byzantine Generals each have a
computer and want to attack the King's wi-fi by brute
forcing the password, which they've learned is a
certain number of characters in length. Once they
stimulate the network to generate a packet, they must
crack the password within a limited time to break in
and erase the logs, otherwise they will be discovered
and get in trouble (executed for treason!).

●They only have enough CPU power to crack it fast
enough if a majority of them attack at the same time.

Byzantine Generals Problem

●They don't particularly care when the attack will be,
just that they all agree, and no minority accidentally
attacks early.

●It has been decided that anyone who feels like it will
announce a time, and whatever time is heard first will
be the official attack time.

●The problem is that the general’s network is not
instantaneous, and if two generals announce different
attack times at close to the same time, some may
hear one first and others hear the other first.

●If that happens they are in trouble...

Byzantine Generals Problem

How do they coordinate their attack time?

Let’s say
tomorrow at 2?

Consensus

●The generals need to reach a consensus:
●They use a proof-of-work chain to solve the problem. Once
each general receives whatever attack time he hears first,
he sets his computer to solve the proof-of-work problem that
includes the attack time in its hash.

●Each time a general creates a block he announces it on the
network, and all the generals receiving it switch to
generating the next block.

●If there are two competing blocks, some of the generals will
work on one “fork” of the blockchain and some will work on
the other.

●However, eventually one fork will be longer, and everyone
will switch to working on that one.

Consensus

●Two generals announce a proposed attack
schedule at about the same time. One group of
generals start hashing the first time, a second
smaller group works on the second time.

Block 1:
Attack at 14:00

Block 1:
Attack at 15:00

Time

Consensus

●Chances are the larger group will
find a block first. They start working
on the next block:

Block 1:
Attack at 14:00

Block 1:
Attack at 15:00

Block 2:
Attack at 14:00

Time

Consensus

●The second group eventually finds a
 block, but by now the first group
finds their third block.

Block 1:
Attack at 14:00

Block 1:
Attack at 15:00

Block 2:
Attack at 14:00

Time

Block 2:
Attack at 15:00

Block 3:
Attack at 14:00

Consensus

●And a fourth block. Obviously the first chain is
extending more quickly. The remaining generals
switch to working on it, and the second chain is
abandoned.

Block 1:
Attack at 14:00

Block 1:
Attack at 15:00

Block 2:
Attack at 14:00

Block 3:
Attack at 14:00

Block 4:
Attack at 14:00

Block 2:
Attack at 15:00

Time

Consensus

●Eventually enough generals have expended enough
computing power on a chain that determines a specific
attack time, so they know the have the resources and
agreed time to execute the plan safely and succesfully.

Block 1 Block 2 Block 3 Block 4

Time

Block 5 Block 6 Block 7 Block 8

Block 1 Block 2X

Identity

●We need to be able to identify agents or
participants within the blockchain
infrastructure:
●Who paid what to whom
●Which item was manufactured by who, and
sold to whom

●Who repaired what, and when, with what
components

●Who invented/wrote/coded what and when
●Who worked where and for how long

Asymmetric Key Cryptography

●We use asymmetric key cryptography
(also known as public key cryptography)

●Your public key is your public identity, or
your “face” on the network

●No one can pretend to be you, because
only you have the private key associated
with the public key, or your “soul”...

●Keeping your private key secret is vitally
important...

Asymmetric Key Cryptography

●Simple summary:
●You create a private key p and use it to generate a public key P

●Anything encrypted with p can only be decrypted with P

 + = ; + =

●Anything encrypted with P can only be decrypted with p

 + = ; + =
.

p

P

Hello,
world!

XvM5#
MG6;R

XvM5#
MG6;R

p

P
Hello,
world!

p
Hello,
world!

Bxn3&
F3%4A

Bxn3&
F3%4AP

Hello,
world!

Asymmetric Key Cryptography

● Some maths (feel free to sleep for the next few minutes)
● Asymmetric key systems rely on one-way functions: it’s

easy to “do” the calculation, but hard to “undo” it.
● For example multiplying/factorisation (RSA):

– What are the factors of 1643? (almost impossible to do in your
head)

– What is 31 * 53? (can be done in your head)

● Other one-way functions include:
– Discrete exponential and logarithm: 2^x/p (ElGamal)

– Modular squaring: x^2 mod N where N = p1 * p2 (Rabin)

– Elliptic curves: y^2 = x^3 + ax + b over finite field, R = kP
(ECDSA)

Asymmetric Key Cryptography

● Although it’s interesting (to mathematicians), you don’t
need to understand the maths. All these asymmetric key
schemes have been implemented in OpenSSL, Python,
Ruby, etc., and you can just use library functions.

● Don’t implement your own versions for production. You’ll
make mistakes.

● What you do need to understand is the practicalities
behind the systems

● As keys are large numbers stored on computers, you’ll
also need to understand hex notation of numerals

● Then you pick a random private key, use the functions to
create the public key, and start encrypting...

Signing

● Question: so how can you use your key to sign something?
● Answer: by using your private key to encrypt a hash of the message

you want to sign, and attaching it to the message (usually along with
your public key).

● For example, imagine Alice and Bob have their own private and
public keys. Here they are:

Pay 100$ to

Aa

B

b B

Alice’s private key
She keeps this secret

Alice wants to authorize this message
by signing it. In this example it’s an
electronic check to pay a hundred bucks to Bob.

Alice’s public key
Anyone can see this Bob’s public key

Anyone can see this

Bob’s private key
He keeps this secret

Signing
● Alice takes a hash of the message

● She encrypts the hash using her private key

Pay 100$ to BSHA256() =
61495e7d19001c89fd3a47bfd1f0f6a7
0765cd1f89d91e8c1b7014d51fa9a544

a61495e7d19001c89fd3a47bfd1f0f6a7
0765cd1f89d91e8c1b7014d51fa9a544

Xlkjlgkj4hghj4#¤#juo5iu 4ucmiou4
#¤jhlkjRT34K4t4&¤¤%3iopit3#¤%75%+ =

● She attaches the
encrypted hash and her
public key to the
message and transmits it
to the blockchain network

Pay 100$ to B

Xlkjlgkj4hghj4#¤#juo5iu 4ucmiou4
#¤jhlkjRT34K4t4&¤¤%3iopit3#¤%75%

A

PEER

PEER

PEER

PEER PEER

PEER

Signing
● Alice takes a hash of the message

● She encrypts the hash using her private key

Pay 100$ to BSHA256() =
61495e7d19001c89fd3a47bfd1f0f6a7
0765cd1f89d91e8c1b7014d51fa9a544

a61495e7d19001c89fd3a47bfd1f0f6a7
0765cd1f89d91e8c1b7014d51fa9a544

Xlkjlgkj4hghj4#¤#juo5iu 4ucmiou4
#¤jhlkjRT34K4t4&¤¤%3iopit3#¤%75%+ =

● She attaches the
encrypted hash and her
public key to the
message and transmits it
to the blockchain network

Pay 100$ to B

Xlkjlgkj4hghj4#¤#juo5iu 4ucmiou4
#¤jhlkjRT34K4t4&¤¤%3iopit3#¤%75%

A

PEER

PEER

PEER

PEER PEER

PEER

Signing

● Will peers include the transaction in their next block for
adding to the blockchain? Yes, on two conditions:
– Examining the blockchain shows that Alice has 100$ to transfer

– The signature on the transaction checks out

● In this case the signature is correct, and
the transaction will be included.

Pay 100$ to B

Xlkjlgkj4hghj4#¤#juo5iu 4ucmiou4
#¤jhlkjRT34K4t4&¤¤%3iopit3#¤%75%

A

Decrypt 61495e7d19001c89fd3a47bfd1f0f6a7
0765cd1f89d91e8c1b7014d51fa9a544

61495e7d19001c89fd3a47bfd1f0f6a7
0765cd1f89d91e8c1b7014d51fa9a544SHA256 ✔Equal?

Block 891

Signing

● Hang on, how do we know Alice has
100$
– Examining the blockchain shows that

Alice has 100$ to transfer

– She got it from Carlos in block 412

Pay 100$ to A

Ohgubjqvqpneybftrguvfuhaqerqoh
pxfK4t4&¤¤%3iopit#9klökk0¤%75%

C

Block 411

Block 412

Block 413

Block 410

Scripts/Smart Contracts

● Transactions are generally presented
as code:
– Bitcoin uses a simple Forth-like language

and stack to code coin transactions

– Ethereum uses Solidity, a Javascript-like
language for coding contracts

– Hyperledger Fabric uses Golang to
produce something called Chaincode

– Hyperledger Sawtooth Lake uses JSON
data structures and SQL-like commands
to trigger transactions based on code
folded in to the system

Block 411

Block 412

Block 413

Block 410

 Condition

 Condition

 Action

Smart Contracts
● Proposed by Nick Szabo in 1994
● An abstract concept relating to the automated execution

of an already agreed contract
● Can be realised in blockchains through a contract

scripting language

Ricardian Contracts
● Based on the work of Ian Grigg in 1996
● A software design pattern to capture the intent of the

agreement of the parties, before its execution
● Produces contracts that are both human and machine

readable, and can be implemented with smart contracts

Bitcoin Transactions

Sample Bitcoin transaction script (pay to public key):

Input:
Previous tx: f5d8ee39a430901c91a5917b9f2dc19d6d1a0e9cea205b009ca73dd04470b9a6
Index: 0
scriptSig: 304502206e21798a42fae0e854281abd38bacd1aeed3ee3738d9e1446618c4571d10
90db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e7ba5fdd7d5d6cc8d25c6b241501

Output:
Value: 5000000000
scriptPubKey: OP_DUP OP_HASH160 404371705fa9bd789a2fcd52d2c580b65d35549d OP_EQUALVERIFY OP_CHECKSIG

● The transaction requires an input, which is where the “money” comes from. The transaction
is digitally signed. For the sender to to claim this input (and send it as an output) they have
to provide the full public key and sign the transaction with the associated private key.

● The amount from the input to send out to a new address is specified in the output. The
destination address is not given: instead a RIPEMD-160 hash of the receiving address is
provided. This is why the public key needs to be provided in the input scriptSig

● You can see that a Bitcoin transaction is a script: the last two lines are commands to
duplicate onto the stack the RIPEMD-160 hash of the receiving address and the expected
hash, compare them and then check the signature. If the result from this script is “True” the
value can been redeemed.

● Bitcoin contains a stack-based language with commands to push items onto the stack,
perform logical operations on them, do logical comparisons, perform arithmetic, and
perform cryptographic actions, amongst others.

Bitcoin Script Commands
Word Description

OP_TOALTSTACK Puts the input onto the top of the alt stack. Removes it from the
main stack.

OP_FROMALTSTA
CK

Puts the input onto the top of the main stack. Removes it from
the alt stack.

OP_IFDUP If the top stack value is not 0, duplicate it.

OP_DEPTH Puts the number of stack items onto the stack.

OP_DROP Removes the top stack item.

OP_DUP Duplicates the top stack item.

OP_NIP Removes the second-to-top stack item.

OP_OVER Copies the second-to-top stack item to the top.

OP_PICK The item n back in the stack is copied to the top.

OP_ROLL The item n back in the stack is moved to the top.

OP_ROT The top three items on the stack are rotated to the left.

OP_SWAP The top two items on the stack are swapped.

OP_TUCK The item at the top of the stack is copied and inserted before the
second-to-top item.

OP_2DROP Removes the top two stack items.

OP_2DUP Duplicates the top two stack items.

OP_3DUP Duplicates the top three stack items.

OP_2OVER Copies the pair of items two spaces back in the stack to the
front.

OP_2ROT The fifth and sixth items back are moved to the top of the stack.

OP_2SWAP Swaps the top two pairs of items.

Bitcoin Script Commands
Word Description

OP_1ADD 1 is added to the input.

OP_1SUB 1 is subtracted from the input.

OP_NEGATE The sign of the input is flipped.

OP_ABS The input is made positive.

OP_NOT If the input is 0 or 1, it is flipped. Otherwise the output will be
0.

OP_0NOTEQUAL Returns 0 if the input is 0. 1 otherwise.

OP_ADD a is added to b.

OP_SUB b is subtracted from a.

OP_BOOLAND If both a and b are not 0, the output is 1. Otherwise 0.

OP_BOOLOR If a or b is not 0, the output is 1. Otherwise 0.

OP_NUMEQUAL Returns 1 if the numbers are equal, 0 otherwise.

OP_NUMEQUALVERIF
Y

Same as OP_NUMEQUAL, but runs OP_VERIFY afterward.

OP_NUMNOTEQUAL Returns 1 if the numbers are not equal, 0 otherwise.

OP_LESSTHAN Returns 1 if a is less than b, 0 otherwise.

OP_GREATERTHAN Returns 1 if a is greater than b, 0 otherwise.

OP_LESSTHANOREQU
AL

Returns 1 if a is less than or equal to b, 0 otherwise.

OP_GREATERTHANOR
EQUAL

Returns 1 if a is greater than or equal to b, 0 otherwise.

OP_MIN Returns the smaller of a and b.

OP_MAX Returns the larger of a and b.

OP_WITHIN Returns 1 if x is within the specified range (left-inclusive), 0
otherwise.

And about 30 others covering flow control, crypto, and more.

Ethereum
● Proposed by Vitalik Buterin in 2013

(when he was 19 years old)
● Development funded by crowdfunding in 2014
● Launched in 2015
● A public blockchain with an associated

cryptocurrency called Ether (ETH), and a more
complicated scripting language called Solidity.

Ethereum

● To get the peers to run your program on the
blockchain (the Ethereum Virtual Machine, or
EVM) you have to pay ETH (for some reason
when used like this it’s called Gas)

● You set a Gas Limit to ensure your program
doesn’t use up all your ETH.

Ethereum
● Solidity looks a lot like Javascript.
● There are all sorts of ways to compile and

deploy your “contracts” on the Ethereum
blockchain:
– Ethereum GUI Wallet/Mist browser allows you to

build and deploy contracts

– Ethereum command line interface (called Geth)
includes a Solidity compiler

– Try it out in a web-browser at
https://ethereum.github.io/browser-solidity/

– More tools appearing all the time (e.g. Dapple,
Node.JS developer’s harness)

https://ethereum.github.io/browser-solidity/

Hyperledger
● This is the “blockchain” project that the big

companies are supporting.
– Coordinated by the Linux Foundation

– Two main projects are:
● Fabric (IBM blockchain for smart contracts)
● Sawtooth Lake (Intel blockchain using modular

components)

● Yes, there are two different blockchain systems...

Fabric
● Tutorial on how to set up a development

environment at
http://www.chainfrog.com/ibm-hyperledger-fabric/

● It uses:
– Docker, a software containerization platform, to

ensure that if you run Fabric on a native platform, all
the required packages and libraries are
standardized. A Node.JS npm provides access to a
Fabric SDK.

– Or, a Virtual Machine running on VirtualBox, and
Vagrant to ensure the VM is Ubuntu configured to
ensure a standard development environment.

http://www.chainfrog.com/ibm-hyperledger-fabric/

Sawtooth Lake
● Also uses a VM and Vagrant to provide a

standardized environment for execution and
development
– Core “sawtooth lake” code provides peers/validators

– “MarketPlace” data structures and objects provide
the means to create and execute transactions on the
blockchain

● Tutorial available at
https://intelledger.github.io/tutorial.html

https://intelledger.github.io/tutorial.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

