
A Lightweight Blockchain Consensus Protocol

Keir Finlow-Bates

keir@chainfrog.com

Abstract

A lightweight yet deterministic and objective consensus protocol would allow
blockchain systems to be maintained and extended in a cheap and efficient
manner, with even low powered computing devices such as smartphones,
point-of-sales terminals and Internet-of-Things devices being able to partici-
pate equally in the creation and validation of blocks. In this paper we present
such a consensus protocol based on the pre-announcement of miners identi-
fied through a hash of their public key and a unique address identifier, and a
chain scoring system based on the proximity of the miner’s hash to a hash of
the preceding block, or a root hash of a Merkle tree produced from a number
of preceding block hashes. This protocol should be reliable for permissioned
and private blockchains, and may well be extensible to public blockchains.

Keywords: blockchain, consensus, proof-of-work, proof-of-stake

1. Introduction

Blockchains are built on consensus-forming protocols, which are used to
determine which packaged block of data or transactions will be the next to
be added to the end of the chain. Although effective, the most prevalent
consensus protocol called proof-of-work (PoW) and used by Bitcoin [1], is an
inefficient energy-consuming solution that has initiated a dedicated hashing
hardware arms-race. Other protocols have been proposed and implemented,
such as: proof-of-stake (PoS), proof-of-elapsed-time (PoET), and practical
Byzantine fault tolerance (pBft). However, PoS relies on subjective consen-
sus, PoET requires dedicated trusted execution environment hardware, and
pBft is implemented through multiple rounds of participant voting, requir-
ing messages in the network to be signed multiple times. This introduces
a disk space overhead to store all the signatures. A more in-depth analysis

1

of the most common consensus protocol variants, PoW and PoS, and their
respective strengths and weaknesses can be found at [2].

A consensus protocol must be objective, that is, any newcomer to the
blockchain system must be able to independently determine from the blocks
available which sequence of blocks forms the actual blockchain without re-
quiring external guidance. It must also be deterministic: two entities with
the same set of blocks must, through application of the protocol, produce the
same chain and come to the same conclusion as to which block constitutes
the end of the chain. The consensus protocol must be resistant to alteration,
in that it should be impossible or prohibitively expensive to attempt to create
and extend a fork off the main blockchain from a point earlier in the chain.
And finally, when applied in a collaborative environment it should have a
low computational overhead to reduce energy and hardware requirements.

As it stands, running a validator node (or “miner” in blockchain terminol-
ogy) in order to maintain and extend a blockchain requires significant levels
of some or all of: computational power, memory, energy and dedicated hard-
ware. As a result it is unfeasible for Internet-of-Things devices, smartphones,
point of sales terminals, and other lower-powered yet ubiquitous computer
equipment to participate in blockchain maintenance. Mining on blockchains
has become the preserve of large server farms in cheap-energy locations, and
both the trustworthiness of the blockchain and the global environment have
suffered accordingly.

We therefore propose a new blockchain consensus protocol that is neither
computer-hardware specific nor energy intensive in order to deal with these
known problems.

2. Miners

In order to be allowed to participate in the generation of proposed blocks
to be added to the blockchain, under our new protocol a miner must pre-
announce its intention to mine by submitting an announcement notification
or transaction to the peer-to-peer network for inclusion in a block.

A waiting period of N blocks is then imposed, and it is only after that
many blocks have been added past the initial notification block that a miner’s
contributions may potentially be included in the blockchain. The parameter
N can be adjusted for a specific blockchain implementation based on the
expected robustness of the blockchain and estimated number of miners that
will be participating, and also on the probability of faults or attacks. For

2

example, for a permissioned blockchain running on an internal network, N
might be set quite low to 8, whereas for a public blockchain running on the
Internet where occasional malicious activity may be likely, the value of N
would be better set to something high such as 2048.

One specific miner is not bound by the waiting period, namely the miner
announced in the first “genesis” block of the blockchain. It may start mining
right away, in order to ensure that the chain can actually grow.

A miner notification message must contain the miner’s public key, which
in the case of a blockchain with cryptocurrency rewards would be the address
the rewards will be paid to, and a unique address identifier (UAI). A UAI
may be an IPv4 or IPv6 network address, a MAC address, or even a domain
name, depending on the specific implementation of the consensus protocol.
The public key and UAI are concatenated and hashed with a standard cryp-
tographic hash function such as SHA256, to produce a miner identification
number (MIN). The hash function used must be one-way, collision-proof, and
with an output that cannot be predicted in advance, i.e. a random oracle.
A specific public key cannot be concatenated with multiple UAIs to produce
multiple MINs for one miner. There should ideally be a cost associated with
the UAI to prevent one miner generating a large number of MINs.

It is important that there is a standardized format or naming convention
for the address type picked as the UAI. For example, for IPv6 addresses the
format recommended in [3] could be used.

The MIN is used in the consensus protocol to calculate which miner has
submitted the block, and this is discussed in greater detail below.

3. Chain scores

At its simplest, a consensus protocol consists of three actions:

• Defining a function which takes as its input a sequence or chain of
blocks, and outputs a score for the chain,

• Examining each possible chain given the available proposed blocks, by
feeding each chain to the function, and recording the score returned,

• Selecting the chain with the “best” score.

The second and third steps are relatively easy to implement, so the re-
maining requirement is to define the consensus protocol’s chain scoring func-

3

tion. For our function we propose a procedure based on the proximity of the
miner’s MIN to a hash calculated from one or more of the preceding blocks.

The new block must have a timestamp no earlier than T − δ where T
is the average block generation time and δ is a window of block generation
allowance. The aim is to produces blocks at a rate of about one every T
seconds. Naturally the time limit is one-sided, to prevent the chain generation
process grinding to a permanent halt if no miners are available for a period
of time. The block to be selected is generated and signed by the miner with
the MIN closest to one of:

• The hash value of the preceding block, or

• The hash value of the concatenation of the hash values of the previous
K blocks for some value of K, or

• The root hash value of the Merkle tree[5] of the last 2K blocks, for some
value of K.

Determining whether the first proposed schema using a hash of a single
preceding block would suffice, or whether a more complicated schema involv-
ing hash chains or Merkle trees would be more robust remains a potential
topic for future research. It is however likely in our opinion that some kind
of hash chain offers more resilience as it links multiple blocks together.

In the unlikely event that two valid MINs are equidistant from the hash
output of the mechanism chosen, the lower hash value wins.

Blocks can only contain data packages that predate the block timestamp,
by at most T ∗ f , where f is a multiplier (i.e. if a transaction is not included
by T ∗ f it has become stale, cannot be included and should be resent).

A block value score is then computed using:

score = 2256/ |H −M | (1)

or
score = 2256 − |H −M | (2)

where H is the hash value returned from applying the hash function to the
preceding block or blocks, and M is the miner’s identification number.

Again, the choice of whether to use division or subtraction to determine
the block score depends on a number of factors, such as the difficulty of
performing long division on large numbers. A simplified method using only

4

the first s significant bits of the hashes for some small value of s might also
improve the ease of coding an implementation of the process.

The complete score for a given chain of available blocks is the total sum
of the score for each block in the chain. The score of each potential chain
can therefore be computed, and the chain with the highest score wins and
becomes the chosen blockchain.

The system is deterministic provided the key miners with announced
MINs are running on the system. That is: given a block at the end of the
chain, it is possible to determine the prime candidate for generating the next
block. However, in practice some miners will drop out of mining over time.
How to handle this is discussed in the next section.

4. Revoking miners and preventing flooding

Miners may occasionally become non-functioning, go off-line for a while,
or even leave the blockchain entirely. If a miner with the closest MIN to the
current chain score fails to report the next block because of this or some other
reason, another miner should produce the next block to continue the chain.
Therefore the subsequent closest miner can submit a block. An optional
extension to the system is to allow this miner to include a MIN cancellation
notice in the new proposed block for the closer miner that failed to report a
block. This then prevents the miner with the canceled MIN from reporting
future blocks until it has re-announced itself and and the usual waiting period
has passed.

Similarly, if the M closest miners fail to report a block, the (M + 1)th
miner can submit a block, including a cancellation notice for the other closer
miners.

Miners should build a table of active MINs by parsing the blockchain and
updating their records on every block, in order to ensure they have an active
snapshot of potential miner activity for current mining.

A related issue is the flooding of the peer-to-peer network with proposed
blocks by miners that do not feasibly have a chance of submitting a successful
block. As there is no real cost associated with submitting a block, many min-
ers will produce and submit one every block round. If not handled properly,
this could lead to the network becoming flooded with useless block proposals.
In particular, miners with MINs far from the chain score will be generating
blocks containing a substantial number of cancellation notifications.

5

The easiest method for dealing with this is for peers to simply drop any
received proposed block that is submitted by a miner with a MIN that is sig-
nificantly low on the list of potentially successful miners. Over time it should
be possible to build up a statistical predictor to determine the chance of any
given miner submitting a successful block, and a punishment scheme could
be implemented, for example to exclude miners for a time proportional to
their MIN distance from the preceding chain score if they repeatedly submit
blocks that stand no chance of being accepted.

5. Stake grinding and early chain attacks

An issue which PoS suffers from, and which at first glance our consensus
protocol might appear to be vulnerable to is stake grinding [4]. In PoS an
attacker scans the entire blockchain to determine a point where their stake
produces a better score for producing a subsequent block than the currently
accepted successor. The attacker starts building a chain fork from that earlier
point in the chain. Similarly, in our protocol an attacker could look for a
block with a successor hash that is closer to their announced MIN than that
of the currently accepted miner’s MIN.

However, due to the miner announcement waiting period the attacker can
subsequently only use their own previously announced miners to grow their
fork, and possibly the resources of a small number of neutral miners who
happen to only have synchronized their blockchain to the fork point at that
precise time in history.

Furthermore, the attacker cannot add miner announcements with fake
miners within the blocks of the forked chain to improve the chance of growing
that chain, because adding each notification will change the hash value of
the block containing the announcement, removing the advantage gained by
having a miner with a more proximal MIN number.

6. Conclusion

We have proposed a consensus building system for blockchains that does
not rely on performing large numbers of wasted calculations, elaborate voting
schemes, and does not depend on amassing substantial quantities of cryp-
tocurrency in order to participate in maintaining and extending a blockchain
system. We started with an announcement system to ensure that miners

6

have to register in order to mine on the blockchain, and to prevent the gen-
eration of spurious mining accounts in order to manipulate the odds of being
the next entity to generate a successful block. We added a scoring system
based on the proximity of any given miner’s identity number to a hash of
one or more preceding blocks in order to determine a score for any proposed
successor block, and presented several scoring schemes for determining the
value of a given chain of blocks, allowing third parties to independently and
objectively decide which chain is the most successful.

A number of different block hashing procedures and chain scoring meth-
ods were presented as potential candidates in order to optimize the consensus
protocol implementation, along with parameters that require fine-tuning and
empirical investigation in order to determine which configuration and param-
eterization would be best for any given blockchain system.

[1] Nakamoto, S., Bitcoin: A Peer-to-Peer Electronic Cash System, 2008,
retrieved on 12 Oct 2016 from https://bitcoin.org/bitcoin.pdf

[2] Bitfury Group, Proof of Stake versus Proof of Work, 2015, retrieved
on 12 Oct 2016 from http://bitfury.com/content/5-white-papers-research/
pos-vs-pow-1.0.2.pdf

[3] Kawamura, S. and Kawashima, M., IETF RFC5952, A Recommendation
for IPv6 Address Text Representation, 2010, retrieved on 12 Oct 2016
from https://tools.ietf.org/html/rfc5952

[4] Poelstra, A., On Stake and Consensus, 2015, retrieved on 12 Oct 2016
from https://download.wpsoftware.net/bitcoin/pos.pdf

[5] Merkle, R. C., US4309569: Method of providing digital signatures, 1979

7

