
WHAT ARE SMART
CONTRACTS?

chainfrog

WHAT ARE SMART
CONTRACTS

AND WHERE AND WHY WOULD YOU USE THEM

A question I get asked again and again at lectures and conferences
is, “what exactly are smart contracts?”

“Are they going to replace conventional contracts? Are lawyers
going to be ousted by programmers in the future? Can smart
contracts fully automate the running of a company?”

It’s not the simplest concept to get your head around, but in this
article I will describe what they are, what they can and can’t do, and
what some of the risks associated with them are. We’ll start with
the history of smart contracts and blockchains, get the technical
part out of the way, and then look at the social side of smart
contracts.

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

http://www.chainfrog.com/

SMART CONTRACTS ON THE
BLOCKCHAIN

If you have a public, open accounts ledger that is tamper-proof, with
a system that allows anyone to create their own unique “bank
account number”, the simplest method for storing the balance of an
account would be to treat the bank account number as a computer
variable – each account number has a value, or balance.
Transferring “coins” from one account to another would then simply
involve subtracting the amount to transfer from one account, and
adding the same amount to the second account. As long as
everything balances out, things are good.

Bitcoin scripts
Satoshi Nakamoto – the inventor of Bitcoin – took a longer term
view. He (or she, or they, as Nakamoto’s true identity is unknown)

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

ACCOUNT A

1 Ƀ

1 Ƀ

1 Ƀ

1 Ƀ

ACCOUNT B

1 Ƀ

1 Ƀ

ACCOUNT A

1 Ƀ

1 Ƀ

1 Ƀ

ACCOUNT B

1 Ƀ

1 Ƀ

1 Ƀ

Before After

considered the fact that with a public ledger, there might be a need
for more complicated transactions than just “transfer X coins from
A to B”. For example, what if you wanted to have transfers that
require multiple parties to sign off on the validity of the transaction,
or if you want to have transfers that can be redeemed after a set
waiting period, or perhaps even some other esoteric transaction
that no-one has thought of yet?

In 2009 when launching Bitcoin, Nakamoto implemented the value
transfer system using a programming language that allows you to
submit short programs to the peer-to-peer network, and which are
run on each node within the network. In simpler terms: within the
computer program running a Bitcoin node, there is a “virtual
machine”: something similar to a tiny scientific calculator with a
limited form of memory and some functions for handling the
checking of digital signatures. When you transfer bitcoins from your
address to someone else’s address, what you are actually doing is
submitting a short simple computer program, known as a script, to
the Bitcoin network and hence to copies of this tiny calculator on
every node. The script is checked by each one to make sure it is a
valid program and that it returns a value of “true” when run, and if it
does the script is added to the blockchain.

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

At a later point, when the person you sent the bitcoins to wants to
send them on to another address, they submit another script that
references your earlier script, and as long as running their new
script returns a results of “true”, the bitcoins are transferred
onwards. The diagram below shows this in a simplified form (there
are a heap of technicalities involved in the actual system, but we
don’t need to discuss them here).

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

BLOCK 200

BLOCK 291

BLOCK 459

Blocks and ScriptsBlocks and Scripts Effective Balances

A = 50

A = 40
K = 10

A = 40
K = 0
L = 5
M = 5

I mined this block
I therefore get 50 Ƀ
Thanks, A

I have 50 from mining block 200 Ƀ
Send 10 to K Ƀ
Return the change (40) to me Ƀ
Signed, A

I received 10 from A in block 291 Ƀ
Send 5 to L Ƀ
Send 5 to M Ƀ
Signed, K

In a sense there really aren’t actually any “bitcoins” being
transferred from from one address to another. Instead, there is a
chain of scripts scattered through the history of the blockchain, and
each one when run returns the value “true”. Effectively, there are
thousands upon thousands of tiny computer programs stored on
the blockchain, and when someone submits a new financial
transaction, the relevant ones are retrieved and run again to check
that the transaction is allowed.

These scripts are the first practical “smart contracts” on a
blockchain. When you think about, a standing payment from your
bank account to cover your electricity bill, or a subscription to a
magazine, or a direct debit, are all smart contracts too!

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

Ethereum and Solidity
Fast forward to 2013, and a young Canadian/Russian programmer
called Vitalik Buterin proposes a blockchain with a Turing-complete
virtual machine in each node. Although Bitcoin has a couple of
dozen commands in its scripting engine, it doesn’t support loops or
functions, and the scripts it can run are basically concerned with
moving bitcoins about under certain condition. In Buterin’s system,
called Ethereum, the virtual machine that runs within each node
doesn’t just support simple scripts, it allows complete computer
programs with loops, functions, user definable variables, and
everything else a programmer needs. There’s even a compiler, called
Solidity, that allows coders to write in a Javascript-like language and
compile their programs into the machine code that Ethereum runs.

But the problem with a Turing-complete machine is that there is no
guarantee the programs submitted to it won’t run forever. And a
program that won’t stop would tie up all the nodes on the peer-to-
peer network if they tried to execute it. It’s called the halting
problem, and Ethereum has an ingenious solution to it. For your
program to run on the blockchain, you need to supply “gas”, which is
paid for with Ether, the blockchain’s associated cryptocurrency.
Ether costs real money to buy, so programmers will only fuel up
their programs with enough to achieve what they want, and if there’s
a bug, the program will burn through all the gas and just … stop.

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

Apart from the added complexity, Ethereum programs, or smart
contracts, are just like Bitcoin scripts. They sit on the blockchain,
and when the right conditions are met, the nodes execute them.
Because the underlying virtual machine is more complicated, smart
contracts can implement ticketing/refund systems, or voting
systems, or parallel cryptocurrencies with additional bells and
whistles.

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

WHAT’S THE CATCH?

We already touched on one of the problems associated with smart
contracts on Ethereum. If you make an error in your code, the
program could potentially burn through a lot of your money. There
are other difficulties to contend with though. Some are technical,
and some are social. We’ll deal primarily with some of the social
ones.

You can’t always get what you want

Imagine for a moment that you have an idea for a smart contract to
manage the share ownership of your company. The contract will
create a limited number of shares, and will allocate them to the
current owners of the company. The idea is then that share owners
can trade them on the blockchain with other people, without the
need for board approval or the involvement of a broker. Smart
contracts aren’t like web apps, or smart phone apps, where if you
find a bug you can simply push out a new version as and when you
please. Therefore you need to define carefully what the smart
contract can and can’t do. Are you going to issue more shares later?
Will there be future share split? If investors come on board, are you
going to have to issue a different class of shares? What happens if
a shareholder accidentally transfers their shares to the wrong
person, or to a totally unclaimed address – can this be fixed? Are
you going to allow share-based voting on the blockchain too?

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

Presumably, you are not a hot-shot Solidity programmer yourself, so
you will have to hire someone to write the smart contract for you.
Are you capable enough to review what they produce, and ensure
that what you described in English to the programmer is what was
then coded up for you? Has the code been thoroughly tested, and
can you be sure there isn’t a subtle back-door in the contract that
allows your distributed on-blockchain company to be taken over?
Even if you know that your programmer is competent and
trustworthy, experience has shown that when there is code, there
are bugs, and they can be subtle and disastrous.

The ghost in the machine

If you are trying to move a legal contract into the realm of computer
code, you’re going to face a problem. The law doesn’t just codify
agreements, it carries with it a “spirit of the law”, and we rely on
judges, juries and lawyers to interpret the meaning behind the laws
we create. Even patent law, which is one of the most formal and
codified sectors of the legal system, still contains non-formal
concepts such as “obviousness”, and “inventiveness”. A smart
contract might be able to track a work-flow through, for example,
the application for a patent, but it won’t be able to determine if other
patents or scientific papers constitute prior art, or if the application
is for an idea that is actually novel.

Similarly, something that a person can immediately spot as a
mistake (should that transaction to pay the entire company’s bank
balance to an unknown address really be executed?) is not going to
be caught by a smart contract unless it’s specifically coded for.

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

Your users will include hackers

If you are running your smart contracts on a private version of a
blockchain, then at least you know who your users are, and when
someone misbehaves you can track them down and resort to the
legal system for any major infraction, or just kick them off for minor
misdemeanors. But on a public blockchain like Ethereum, anyone
can see your code, and potentially interact with it. The world is full
of people who seem to have nothing better to do than to sit at a
terminal and probe for weaknesses, write malicious code to take
advantage, or even just engage in simple vandalism. When dealing
with blockchains that carry crypto-tokens with real cash value, there
is an added strong incentive for hackers to look for ways to steal,
rather than to just engage in mischief. The more value your smart
contract backs, the more hackers are going to try to bend it to their
own will.

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

THE “DAO HACK”

DAO STANDS FOR
DISTRIBUTED AUTONOMOUS

ORGANIZATION

RAISED 150,000,000$ IN CROWD FUNDING

WAS MEANT TO BE A
DECENTRALIZED VENTURE CAPITAL

FUND

50,000,000$ IN ETHER TOKENS
WERE SIPHONED OFF DUE TO

A BUG IN THE SMART CONTRACT
CODE

Truth is an event

Smart contracts can only act on data that is visible on the
blockchain. They don’t connect out to the real world. As a result, in
order to get a smart contract to act on an outside event, you need to
implement an “oracle” - a conventional piece of software running on
an external server that, for example, might monitor the stock price
of a company, or the temperature in a given location, and then
writes this data back to the blockchain in a transaction. But just
because some data is on a blockchain, that doesn’t make it true. If
your oracle is wrong, or is hacked, the smart contract will be
operating on false premises, and could end up transferring a fortune
in crypto-tokens in error.

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

STOCK MARKET ORACLE
CHFG: 254$

CHFG: 258$

CHFG: 266$

SMART CONTRACT

SUMMARY

So there you have it. Smart contracts are computer code that is
submitted to a blockchain, where it sits until the right conditions are
met, and then all the nodes on the blockchain network run it, and
record the result. They can be used to provide an implementation of
a workflow or payment instrument, moving virtual currency around
as the situation dictates. They can even connect in to external
events through outside systems called “oracles”, that forward real
life data onto the blockchain.

But they carry a lot of risks. Smart contracts are difficult, or
sometimes even impossible to update. They may contain subtle but
disastrous bugs that can result in the loss of substantial value. And
finally, they don’t use common sense in interpreting what the right
action is – they just do what their code tells them to. Bitcoin uses a
few simple common transaction scripts that have been run millions
of times and tested over nearly a decade, and still occasional flaws
or exploits surface. With more powerful smart contract systems, the
opportunities may increase, but so will the risks.

In conclusion, feel free to enter the world of smart contracts, but
proceed with caution!

© 2017 Chainfrog Oy. Visit us at http://www.chainfrog.com for more information on blockchains.

