
Adding Trust to CAP: Blockchain as a Strong Eventual

Consistency Recovery Strategy

Keir Finlow-Bates

keir@chainfrog.com

September 27, 2017

Abstract

The CAP theorem [3] asserts that in any distributed data store only two out
of three guarantees can be provided regarding consistency, availability, and
partition tolerance. In commercial systems on the internet, partition toler-
ance can never be fully guaranteed in practice, limiting the choice to either
consistency or availability. Furthermore, as availability has the most signif-
icant impact on revenue, ultimately the system design of distributed data
stores for businesses reduces to a choice between different eventual consis-
tency recovery strategies. Seen in this light, although blockchain is a strong
eventual consistency recovery scheme with reconciliation through a consensus
protocol, it is an inefficient and expensive method for achieving such consis-
tency. However, when a fourth overlooked guarantee is added to the CAP
mix — namely the question of trust — blockchain comes into its own. In
this paper I argue that the significance of blockchain when considering dis-
tributed data lies in its provision of a new approach to an extended version
of the CAP theorem: CAPT, which asks, “to what level can you guarantee
consistency, availability, partition tolerance and trust?”

Keywords: blockchain, consensus, CAP, database, consistency, trust

1. Introduction

Historically, distributed data stores have been owned and operated by a
single entity such as a corporation, often acting as a middleman in transacting
between different external parties. In this situation the question of trust is
reduced to a binary choice — either you trust the entity and therefore submit
transactions to and retrieve data from their system, or you do not trust them
and therefore select another service provider, “roll your own” solution, or

1



abstain completely. A result of this has been that the issue of trust does not
figure in Brewer’s CAP theorem. The CAP theorem has been refined over
the years to consider consistency and availability as lying on a continuous
spectrum [2], and has informed further research into ACID versus BASE [10],
but apart from this it has basically remained unchanged.

In [2] Brewer further argues that because partitions in a network are rare,
the aim is to ensure “perfect C[onsistency] and A[vailability] most of the time,
but when partitions are present or perceived, a strategy that detects parti-
tions and explicitly accounts for them is in order”. In summary, partitions
in traditional database network architecture are seen as very unusual events.

In a blockchain system the occurrence of partitions is significantly more
likely. Blockchain attempts to handle a new emerging case in data stor-
age systems whereby parties that are completely untrusted or only partially
trusted are participating in the network on an equal footing. Not only are
accidental partitions due to network or node failures a possibility, but a pub-
lic blockchain in particular has to deal with maliciously generated partitions,
chain forks due to competing nodes, and software forks due to community
disagreement. Standard fault tolerance methods such as Praxos [7] and Raft
[9] are no longer sufficient, and a new strategy is required to resolve these
discrepancies.

Blockchain originated from an attempt to solve the “double-spending”
problem in the context of a decentralized system [8], in which a digital to-
ken recorded on a ledger or in a database can be spent more than once
unless suitable consistency approaches are taken. In a centralized system the
double-spend issue is not a problem, because the central authority has the
final say over the “single view of the truth”.

In this paper I examine how blockchain resolves the fourth guarantee of
trust and allows for an estimate of such trust on a spectrum, from completely
untrusted or unknown and untraceable participants on the network, right up
to a fully trusted network of participants. The analysis highlights the obser-
vation that ultimately the purpose of blockchain is enabling the sharing of
data and transmittal of transactions or states between different stakeholders
across low trust boundaries, and that this should inform the development of
use cases for blockchain.

2



2. On trust

When you submit your personal data to a third party for storage, dis-
semination and retrieval, or delegate your financial transactions to a bank or
credit card provider, you are implicitly making a trust decision. Yet hacks
such as the Ashley-Madison and Equifax data leaks show that in many cases
such trust is unfounded. Similarly, the emergence of Bitcoin as an alternative
value transmission protocol emerged as a response to perceived malfeasance
by the financial sector. And yet the CAP theorem is notably silent on the
issue of trust. This may be in part due to the development and deployment
of public, decentralized, and distributed systems being relatively new, and in
part due to the fact that third party data storage and transaction systems are
closed to inspection. Such “security through obscurity” makes a meaningful
assessment of the risk associated with implicit trust impossible until such
trust is revealed as unfounded after a breach. As with the initial formulation
of the CAP theorem, trust is then a Boolean option – either you trust the
system completely (T = 1), or you do not (T = 0).

Understanding how an estimate of trust can be calculated for a blockchain
requires a review of the conditions under which a “single view of the truth”
may be lost and subsequently regained, and is the topic of the next section.

3. Consistency, uncles/orphans and forks

There are three changes that affect blockchain consistency dramatically
and which are not standard partitioning as experienced by conventional dis-
tributed databases: orphan or uncle blocks1, soft forks, and hard forks. At
their simplest, each is an event in which the data chain comprising the
blockchain splits and grows along two separate paths, with subsets of the
blockchain participants following each path. In a successful blockchain im-
plementation the split should eventually be resolved, with one chain winning

1There is some confusion regarding the terminology for accidental chain forks based
on duplicate “next block” candidates for extending the chain. The terms “stale blocks”
and “orphan blocks” are used interchangeably by some authors. Others reserve orphan
blocks to mean blocks for which the parent block has not yet been downloaded during
a peer node sync operation. The confusion results from a misuse of the term “orphan”
in the original Bitcoin code base. At the time of writing, although the term orphan is a
misnomer, it is most commonly used to indicate valid yet non-included blocks. Ethereum
uses the term “uncle block” to describe these.

3



out over the other deterministically.

3.1. Orphan blocks and orphan chains

The blockchain extends over time as successive blocks of data are added
to the chain, forming a hash-linked list. A fork due to orphan blocks occurs
when there are two equally or nearly equally valid candidates for the next
block of data in the blockchain. This event can occur when the two blocks are
found close in time, and are submitted to the network at different “ends”,
so that one subset of nodes receives the first candidate before the second,
and the second subset of nodes receives the second candidate before the first.
Each subset of nodes continues to attempt to grow the chain from their
chosen candidate. Eventually one chain will grow faster than the other, and
participants working on the shorter chain will switch, resulting in the more
successful chain growing even faster, until all participants have switched to
the winning chain. The blocks in the losing chain are then described as
“orphaned”.

Orphan blocks are generally a natural event in the blockchain ecosystem,
and will always be resolved eventually. In Bitcoin, about 0.1% of blocks are
orphans [6], and they typically resolve within one further block generation
cycle. In Ethereum, orphan or uncle blocks are actually encouraged, and
although their transaction content does not form part of the data set, the
effort expended in creating them counts towards the proof-of-work hardening
of the chain.

However, malicious blocks can also be created, for example in an attempt
to attach to an earlier block in the chain. If a malicious block breaks the
consensus protocol it will be rejected by the rest of the network, but a valid
malicious block may intentionally be created earlier in the chain in order
to create a new fork that benefits the attacker. In this circumstance the
blockchain has to rely on the majority of the network being benign and
ignoring the new chain in favor of the old.

3.2. Soft forks

Soft forks occur when part of the network agrees to alter the blockchain
protocols in a backward incompatible manner that places further restrictions
on what constitutes a valid block. Under a soft fork, participants who refuse
or fail to upgrade to the new protocol will still accept blocks that are created
by the new updated software. However, they may continue to submit blocks
that are no longer accepted by the participants who have upgraded. If the

4



majority of the network has accepted the soft fork, the laggards may end up
mining blocks that will not make it into the chain, which is a waste of their
computing power and hence the financial rewards that public blockchains
typically award to block-creators. This provides an incentive for the par-
ticipants to upgrade. Soft forks allow for a gradual upgrade of the nodes
operating on the network, provided a majority accepts the changes when
they are released. They are the preferred method for improving the under-
lying blockchain mechanisms because they usually result in less chaos.

Technically the new software could reject the validity of the existing chain
up to the fork point, if not for the fact that the software normally has a marker
indicating when the fork occurred and uses the old protocols for validation
up to that point.

3.3. Hard forks

The most difficult change to adopt is the hard fork, under which the
majority of the nodes agree to alter the protocols in a backward compat-
ible manner, by extending the protocol. Under a hard fork, future blocks
will be rejected by nodes that do not upgrade. Hard forks are the most
likely to generate problems in the blockchain ecosystem and have resulted in
blockchain systems splitting in two permanently, for example Bitcoin Cash
(BCH) versus Bitcoin Classic (BTC) [12].

An example of an unintended hard fork (which subsequently had to be
reverted) was the update of Bitcoin from 0.7 to 0.8 in March 2013 [1], in
which the underlying database was changed from Berkeley DB to LevelDB.
Unbeknownst to the developers, version 0.8 with LevelDB was able to han-
dle the inclusion of more transactions into a block than version 0.7 was.
Unfortunately the split between 0.7 and 0.8 miners on the network was ap-
proximately 40/60, and as a result two chains developed. The final orphaned
chain managed to reach a length of 24 blocks before the fork was resolved.
This remains the longest orphan chain in Bitcoin history to date.

4. Calculating trust

Once the causes of orphan blocks and chains have been categorized, it
becomes possible to derive a rule to estimate an actual probability of a trans-
action becoming part of the globally accepted truth on the blockchain. In
Bitcoin this is simplified to a rule of thumb — 6 blocks further on (also
known as confirmations) the transaction is effectively considered permanent.

5



As a result, software and users can make a determination whether to submit
further transactions based on the number of confirmations and the impor-
tance assigned to the initial transaction. In Bitcoin’s case, this boils down to
“accept a coin transaction as confirmed after one or even no confirmations if
it concerns a small sum, e.g. the price of a cup of coffee, but when buying a
car wait for 6 blocks, and for buying a house wait for 20 or 30 blocks”.

4.1. Empirical estimates

Calculating the probability of an orphan chain in Bitcoin is difficult, be-
cause different nodes keep different records of the blockchain, and when a
new node joins, the old nodes only forward what they consider to be the
blocks comprising the chain at that time. Furthermore, it is not possible
to estimate what the odds of an unusual fork event will be, so an empirical
estimate of the likelihood of orphan blocks can only be made for normal oper-
ation of the blockchain. However, some statistics are available from a variety
of sources. With this data it is possible to parse back over forks to determine
the probability that your transaction is included in what will ultimately be
an orphan block. For example, Figure 1 below shows the number of orphan
blocks found each month for a three-year period in Bitcoin’s recent history.

Figure 1: Recent orphan block counts in Bitcoin

6



Over this period of 1125 days, approximately 162000 blocks were added
to the Bitcoin blockchain. 485 orphan blocks were mined, for an average of
0.431 orphans per day. The maximum number of orphans in one day was 5.
Unfortunately this data does not tell us the length of orphan chains during
the period. A rough estimate of the odds of your transaction ending up in
an orphan block is:

485

(162000 + 485)
≈ 0.00298

This is approximately 0.3%. The transaction could of course be included
in both the orphan block and the successful block at the same time. Further-
more, technically Bitcoin transactions do not have an expiry date, so they
should eventually be included in a mainline block.

Another approach is to use the Bitcoin core software command line option
printblocktree, which produces a text file output that shows the main
blockchain line and forks. This only works on a system which has been
running without interruption over the period being examined. Records on the
internet are patchy at best, but Decker [4] at StackExchange presents some
data for blocks between 90392 and 189512, representing a period of 991200
blocks, or about 688 days of blockchain activity as observed by Michael
Marquardt.

Fork length Number of occurrences
1 87
2 4
3 1
4 1

Table 1: Forks observed on one Bitcoin node — 90392 to 189512

Using these figures, we end up with the odds of a transaction ending up
in an orphan block at:

93

(99120 + 93)
≈ 0.00094

At about 0.1% these odds match the figure quoted in Kernfeld [6]. Al-
though lower than our first estimate, the order of magnitude is still the same,
and the calculation reveals that blockchain nodes at the edge of the network

7



with fewer peer connections will return different results from central nodes
with many peer connections. Unfortunately both Kernfeld and our estimate
are an order of magnitude smaller than Decker et al. [5]. Why this should
be is not clear.

4.2. Theoretical estimates

A more generalized approach for a proof-of-work backed blockchain such
as Bitcoin can be taken by assuming a simple model of the network, repre-
sented by a regular isometric graph (except at the boundary), with an equal
latency of l for each edge and n edges per node. We can propose a function
such that after t seconds, miners controlling a proportion α(t) of the mining
power will have received any new valid block, up to some point in time tmax,
after which all miners will have received it. That is, α(t) = 1 for all t > tmax.
As the number of nodes that have received a block notification after k la-
tency periods is n

∑k
x=1 x = nk(k+1)

2
we can see that the proportion should

grow quadratically. The following is therefore an acceptable approximation
for the block propagation function for a system with many nodes:

α(t) =

{
t2

(tmax)2
0 6 t < tmax

1 t > tmax

Proof-of-work based blockchains adjust the difficulty of finding a new
block in proportion to the network hash rate, so that the blocks are found at
a constant average rate. For example, mean time between blocks for Bitcoin
is µ = 600s.

As a result, finding blocks is a Poisson process, and the probability distri-
bution that describes the time between events is an exponential distribution.
In our case, given that a block has just been found, we need to calculate the
probability that at least one other miner that has not received notification of
the first block finds a block before time tmax (at which point all miners know
of the first block). This means that the hashing power dedicated to finding
a block that will end up being an orphan is in proportion to 1− α(t) during
the time period 0 6 t < tmax.

The probability that a block will be found within tmax is given by the
cumulative distribution function for the exponential distribution, 1 − e−λx,
where x = tmax and λ = 1

µ
= 1

600
.

To find out the proportion of hash power spent on finding an orphan, we
evaluate the following:

8



∫ tmax

0

1− t2

t2max
dt =

2

3
tmax

So the proportion is 2
3

after the ratio is normalized.
Finally, from Decker et al. [5] we can obtain figures estimating tmax for the

Bitcoin network. Decker et al. quote a mean block arrival time for a general
node of 12.6s. For our hashing power proportion function, this means that:

tmax =
3
√

2× 12.63 ≈ 15.875

Therefore, putting it all together, with our model the estimated percent-
age of orphan blocks is:

2

3
× (1− e

−15.875
600 ) ≈ 0.01741

At 1.741% our simple model produces a value very close to Decker et al.’s
empirically observed value of 1.69%.

5. Summary

Although private and public blockchain systems face different issues in
building consensus, they do have some features in common. Both public
and private blockchains will face a consistency problem due to network la-
tency, which needs to be overcome by the blockchain consensus protocol. As
demonstrated above, the probability of a consensus discrepancy and the ex-
pected resolution time can be calculated empirically or theoretically with a
reasonable level of accuracy.

Public blockchains also suffer from a significant level of risk due to ma-
licious attackers. Although it is possible to calculate the chances of success
given knowledge of an attackers resources [11], it is not possible to provide
an estimate of the probability that someone will actually mount an attack
against a given public blockchain.

Private blockchains are less likely to suffer an attack, as the participants
can be clearly identified, and due to the audit trail left by the tamper proof
record of the blockchain any damaging activity can be attributed to the
responsible party, who can then be expelled from the blockchain system.
The damage can subsequently be corrected.

Unlike traditional centralized data storage solutions, blockchain allows
for the sharing, editing and creation of data between different entities across

9



lower trust boundaries, and under certain circumstances it is possible to
produce a measure of the likelihood of and extent to which the system will
be inconsistent, together with an estimated resolution time. Although no
deterministic measure of the level of trust within the system can be provided,
it should be noted that in the CAP theorem there is similarly no accurate
determination of the level of consistency or availability provided; nor is the
probability of partitioning within the system estimated.

6. Conclusion

I have proposed an extension to the traditional CAP theorem by adding
an extra consideration, namely the issue of trust. When a decentralized data
storage system is considered, in particular an open system where anyone
may join as a node and participants are pseudo-anonymous, the standard
CAP theorem model breaks down. A measure of the level of trust engen-
dered is then required in order to provide a satisfactory balanced solution.
Blockchain, through the use of consensus protocols, a time stamped hash-
linked list of data blocks, and a consensus protocol such as “proof of work”
with a history of transactions and blocks added to the chain provides such
a quantifiable system with a probabilistic measure of the consistency of the
system at any given point in time, both through empirical and theoretical
methods.

Further issues remain, primarily due to the performance reduction caused
by the increased workload on the system network due to block generation
and validation. The provision of methods for the correction and rollback
of databases attached to and reading from a blockchain data stream should
therefore be of interest. As the trade-off in the original CAP theorem be-
tween consistency and availability and the subsequent emergence of NoSQL
databases systems were due to significant increases in the quantity of data
needing to be stored and processed, a secondary area for further research
concerns the integration of blockchain with big data.

References

[1] Andresen, G., March 2013 Chain Fork Post-Mortem, 2013, retrieved
on 23 Sept 2017 from https://github.com/bitcoin/bips/blob/master/
bip-0050.mediawiki

10



[2] Brewer, E., IETF RFC5952, CAP Twelve Years Later: How the “Rules”
Have Changed, 2012, retrieved on 21 Sept 2017 from https://www.infoq.
com/articles/cap-twelve-years-later-how-the-rules-have-changed

[3] Brewer, E., Toward Robust Distributed Systems, 2000, Proceedings of the
19th Annual ACM Symposium on Principles of Distributed Computing
(PODC 00), ACM, pp. 7-10

[4] Decker, C., StackExchange Answer, 2012, retrieved on 23 Sept
2017 from https://bitcoin.stackexchange.com/questions/3343/
what-is-the-longest-blockchain-fork-that-has-been-orphaned-to-date

[5] Decker, C. and Wattenhofer, R., Information Propagation in the Bitcoin
Network, 2013, Proceedings of the 13th IEEE International Conference
on Peer-to-Peer Computing, retrieved on 26 Sept 2017 from http://www.
tik.ee.ethz.ch/file/49318d3f56c1d525aabf7fda78b23fc0/P2P2013 041.pdf

[6] Kernfeld, P., How Bitcoin Loses to the CAP Theorem, 201, re-
trieved on 23 Sept 2017 from http://paulkernfeld.com/2016/01/15/
bitcoin-cap-theorem.html

[7] Lamport, L., Paxos Made Simple, 2001, retrieved on 23 Sept 2016 from
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/
12/paxos-simple-Copy.pdf

[8] Nakamoto, S., Bitcoin: A Peer-to-Peer Electronic Cash System, 2008,
retrieved on 12 Oct 2016 from https://bitcoin.org/bitcoin.pdf

[9] Ongaro, D. and Ousterhout, J., In Search of an Understandable Con-
sensus Algorithm, 2014, Proceedings of USENIX ATC 14, retrieved
on 23 Sept 2016 from https://web.stanford.edu/∼ouster/cgi-bin/papers/
raft-atc14

[10] Roe, C., ACID vs. BASE: The Shifting pH of Database Transaction
Processing, 2012, retrieved on 21 Sept 2017 from http://www.dataversity.
net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

[11] Rosenfeld, M., Analysis of hashrate-based double-spending, 2012, re-
trieved on 25 Sept 2017 from https://arxiv.org/pdf/1402.2009.pdf

11



[12] Smith, J., The Bitcoin Cash Hard Fork Will Show Us Which Coin Is
Best, 2017, in Fortune Magazine, retrieved on 23 Sept 2017 from http:
//fortune.com/2017/08/11/bitcoin-cash-hard-fork-price-date-why/

12


